2,770 research outputs found

    From Derrida's random energy model to branching random walks: from 1 to 3

    Full text link
    We study the extremes of a class of Gaussian fields with in-built hierarchical structure. The number of scales in the underlying trees depends on a parameter alpha in [0,1]: choosing alpha=0 yields the random energy model by Derrida (REM), whereas alpha=1 corresponds to the branching random walk (BRW). When the parameter alpha increases, the level of the maximum of the field decreases smoothly from the REM- to the BRW-value. However, as long as alpha<1 strictly, the limiting extremal process is always Poissonian.Comment: 12 pages, 1 figur

    Critical end points in (2+1)-flavor QCD with imaginary chemical potential

    Full text link
    We present here the results from an ongoing determination of the critical quark mass in simulations of (2+1)-flavor QCD with an imaginary chemical potential. Studies with unimproved actions found the existence of a critical quark mass value at which the crossover transition ends on a second order phase transition and becomes first order for smaller values of the quark mass for the case of both vanishing and imaginary chemical potential. We use the Highly Improved Staggered Quark (HISQ) action and perform calculations in the Roberge-Weiss (RW) plane, where the value of the critical mass is expected to be largest. The lowest quark mass value used in our simulation corresponds to the pion mass mπm_\pi, down to 4040 MeV. Contrary to calculations performed with unimproved actions we find no evidence for the occurrence of first order transitions at the smallest quark mass values explored so far. Moreover we also show that the chiral observables are sensitive to the RW transition. Our results also indicate that the RW transition and chiral transition could coincide in the chiral limit.Comment: Prepared for the proceedings of "CPOD2018: Critical Point and Onset of Deconfinement", held at Corfu Island, Greece. arXiv admin note: substantial text overlap with arXiv:1811.0249
    • …
    corecore